Key concepts and questions

How do we know the value of each number?

- It is important to recognise the value of each digit in a two digit number. This helps with addition and subtraction too.
- When we count the ones digit and tens digits change.
- When we add one to a number that ends in 9, we cross into the next multiple of 10 .

Key Vocabulary							
Tens	The number of 10s in a number There is one ten in 15	The number of ones in a number There are 5 ones in 15	1s				
Ones	To break a number into parts, like tens and ones						
partition	A whole number made of one numeral						
One digit number	Less than	5					
Two digit number	A whole number made of two numerals						
Greater than	Equal to						

Representations

Ten frames: Count on from 10, for numbers to 20

Place value grid: Shows how many tens and how many ones

10s	1s
1	3

Bead string: This helps with partitioning into tens and ones and finding one more and less than a number

Part whole model: This helps to organise representations of numbers from 1 upwards. It supports the composition of numbers.

Prior learning

Like with numbers to 10, it is important to continue using 1:1 correspondence for counting to 20.

Always count on, not count all.

