Key concepts and questions

What can algebra be used for?

Algebra can be used to help find missing lengths in a shape, find missing numbers, find missing angles and coordinates.

How can an equation be represented visually?

- In algebra, using the inverse often helps to solve an equation, bar models can help visualise this.
$23+x=36$

The inverse is $36-23=13$ so $x=13$
What does it mean when a number is next to a letter? For example, $5 n$. This means $5 \times$ the number represented by n.

Representations

Function machines help to break down the steps in an equation.

Concrete resources can be used to represent terms.

Words	Concrete	Algebra
I think of a number		x
Add 3		$x+3$
My answer is 5	= EREE	$x+3=5$

Key Vocabulary	
Sequence	A list of numbers with a pattern
Rule	Mathematically explains the sequence's pattern
Term	Each number in a sequence
Expression	A group of numbers, letters and operation symbols e.g $2 a+4$
Equation	An expression with an equals sign e.g. $2 a+4=16$
Formula	A mathematical rule e.g. area of a rectangle $=$ base \times height
Substitute	When you change letters for numbers in an equation
Inverse	X and \div are the inverse of each other and + and -
Solution	Possible values that can make the equation correct
Enumerate	Find all the possible solutions for an equation

Making connections

Intervals

Finding the term to term rule for a linear sequence develops on finding intervals on a scale.

Week	1	2	3
Money left ($£$)	46	42	38

Ben starts with $£ 50$, each week he spends $£ 4$.
After n weeks he has $£ 50-n \times 4$
Missing terms can also be found like missing intervals on a scale.

Known facts
Use known facts to find all possible solutions. This is called enumerating possibilities.

$\mid 2 a+b=10$
 2 b 3 4 4 2 5 0

Shapes

In regular shapes, all side lengths are equal. So, perimeter of a regular polygon $(P)=$ side length
$(L) \times$ number of sides (S) $P=L S$

