Key concepts and questions		
What is approximate equivalence between imperial and metric meas		
Length	Mass	Capacity
1 inch $\approx 2.5 \mathrm{~cm}$	16 ounces ≈ 1 pound	8 pints ≈ 1 gallon
1 foot $\approx 30 \mathrm{~cm}$	1 ounce $\approx 25 \mathrm{~g}$	1 gallon ≈ 4.5 litres
1 mile $\approx 1.6 \mathrm{~km}$	1 pound $\approx 450 \mathrm{~g}$	1 pint $\approx 570 \mathrm{ml}$
5 miles $\approx 8 \mathrm{~km}$	2.2 pounds $\approx 1 \mathrm{~kg}$	

How is volume calculated?

Volume of a cuboid=length \times width \times height

Will shapes with the same area also have the same perimeter?
This is not true. In this example, both shapes have an area of $36 \mathrm{~cm}^{2}$ but the perimeter of Shape A is 26 cm whilst the perimeter of shape B is 24 cm .

Representations

Place value chart

Can be used when x and \div by 10, 100
or 1000 to convert. $40,500 \mathrm{~g}=40.5 \mathrm{~kg}$

TTh	Th	H	T	O	\bullet	Tth	Hth
4	0	5	0	0	\bullet		
			4	0	\bullet	5	

Bar model

Help with representing equivalence and converting between measures, $16 \mathrm{~km} \approx 10$ miles.

10 miles

Key Vocabulary			
area	perimeter	capacity	volume
estimate	approximate	equivalence	parallelogram
Metric	Weight: Gram (g), kilogram (kg). Length: millimetre (mm), centimetre (cm), metre (m), kilometre (km). Volume: millilitre (ml), litre (l).		
Imperial	Weight: Pound, ounce, stone. Length: Inch, foot, yard. Volume: pint, gallon.		
cm^{3} and m^{3}	A litre is equivalent to $1000 \mathrm{~cm}^{3}$ and 1 millilitre is equivalent to $1 \mathrm{~cm}^{3}$.		

Making connections

Area of parallelograms and rectangles

This parallelogram can be transformed into a rectangle. You find area exactly as you would with a rectangle by doing base length \times height.

Area of parallelograms and triangles
All triangles are half of a
parallelogram. Multiply height by base length then divide by two.
Multiplying and dividing by 10,100 and 1000

